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a b s t r a c t

The inverses of r-bandedmatrices, for r = 1, 2, 3 have been thoroughly investigated as one
can see from the references we provide. Let Br,n (1 ≤ r ≤ n) be an n × n matrix of entries
{aij}, −r ≤ i ≤ r , 1 ≤ j ≤ r , with the remaining un-indexed entries all zeros. In this paper,
generalizing a method of Mallik (1999) [5], we give the LU factorization and the inverse
of the matrix Br,n (if it exists). Our results are valid for an arbitrary square matrix (taking
r = n), and so, we will give a new approach for computing the inverse of an invertible
square matrix. Our method is based on Hessenberg submatrices associated to Br,n.

© 2012 Elsevier B.V. All rights reserved.

1. Background

There are various methods for finding inverses of matrices (if these exist), and we recall the Gauss–Jordan method, the
triangular decomposition such as LUD or Cholesky factorization, to mention only a few. A very popular approach is based
on block partitioning. Let A =


A11 A12
A21 A22


whose inverse (called Schur’s complement) is

A−1
=


A−1
11 + A−1

11 A12B−1A21A−1
11 −A−1

11 A12B−1

−B−1A21A−1
11 B−1


,

where B = A22 − A21A−1
11 A12 (under the ‘‘right’’ conditions, namely, that A11, B are invertible). Further, an iterative approach

for finding the inverse exists, but its convergence is a function of the matrix’s condition number, cond(A) = ∥A∥∥A−1
∥ (in

some norm, say, ℓ∞, where ∥A∥∞ = max


j |aij|; or ℓ1, with ∥A∥1 = ∥AT
∥∞). We will not go into details regarding these

parameters of a matrix as the considerable literature has been dedicated to these concepts.
Certainly, the inverse of a diagonal matrix (if it exists) is found easily: if A = diag(a1, . . . , an), then A−1

=

diag(a−1
1 , . . . , a−1

n ). If U is a bidiagonal, say U =

u1 c1 0 · · · 0
0 u2 c2 · · · 0
· · · · · · · · · · · · · · ·

0 · · · · · · · · · un

 , ui ≠ 0, then U−1
= (vij)i,j, where the entries

satisfy the recurrences

vij =


0, i > j;
1
ui

, i = j

−
civi+1,j

ui
, i < j.
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These recurrences can certainly be solved, and we obtain

vij =


0, i > j
1
vj

j−1
k=1


−ck
uk


, i ≤ j.

Going further to tridiagonal matrices, things start to change.Wewant tomention here thework of Schlegel [1], who showed

that if B =

b1 1 0 · · · 0
1 b2 1 · · · 0
· · · · · · · · · · · · · · ·

0 · · · · · · 1 bn

 , then the inverse B−1
= (cij)i,j is given by cij = r−1ri−1rn−i, i ≤ j and cji, if j < i, where

r0 = 1, r1 = −b1, rk = −(bkrk−1 + rk−2), k = 2, . . . , n − 1 and r = bnrn−1 + rn−2 = (−1)n+1 det(B). We would like to
make an observation at this point: since the inverse of a tridiagonal matrix is a full matrix, the Schur’s complement method
is not very efficient.

Moreover, Vimuri [2] obtained the inverse of another particular tridiagonalmatrix in terms of theGegenbauer polynomial
Cα
n (x) (for α = 1) whose generating function is 1

(1−2xt+t2)α
=


∞

n=0 C
α
n (x)tn; Prabhakar et al. [3] showed some connection

between the aforementioned inverse and the generalizedHermite polynomials, namely, gm
n (x, λ) =

[n/m]

k=0
n!

k!(n−mk)!λ
kxn−mk.

(Classical Hermite Hn(x) are obtained form = 2, λ = −1, x → 2x.)
Many special cases of the bandedmatrices such as Toeplitz matrices, symmetric Toeplitz matrices, especially tridiagonal

matrices, etc., have been studied by several authors, as we previously mentioned (the reader can findmanymore references
published in the present journal, for instance [4], among others). These matrices arise in many areas of mathematics and its
applications. Tridiagonal, ormore general, bandedmatrices are used in telecommunication system analysis, finite difference
methods for solving PDEs, linear recurrence systems with non-constant coefficients, etc., so, it is natural to ask the question
of whether one can obtain some results about the inverse of 4-diagonal, or perhaps, even general banded matrices. We will
do so in this paper.

Throughout this paper, we consider a general r-banded matrix Br,n of order n defined by

Br,n =

bij


=



a11 a21 a31 . . . ar1 0 . . . 0

a−2
1 a12 a22 a32 . . . ar2

. . .
...

a−3
1 a−2

2 a13 a23 a33 . . .
. . . 0

... a−3
2 a−2

3 a14 a24
. . .

. . . arn−r+1

a−r
1

... a−3
3 a−2

4 a15
. . . a3n−3

...

0 a−r
2 . . .

. . .
. . .

. . . a2n−2 a3n−2
...

. . .
. . . . . . a−3

n−1 a−2
n−2 a1n−1 a2n−1

0 . . . 0 a−r
n−r+1 . . . a−3

n−2 a−2
n−1 a1n



(1)

where aij’s stand for arbitrary real numbers, −r ≤ i ≤ r, 1 ≤ j ≤ r ≤ n (note that the i in the notation ain does not denote
the ith power of an). When r = n, the matrix Bn,n is reduced to an arbitrary square matrix.

In this paper, generalizing a method of [5], we give the LU factorization and (in our main result) the inverse of the matrix
Br,n (if it exists). Our results are valid for an arbitrary square matrix (by taking r = n). Therefore we give a new approach for
computing the inverse of an invertible squarematrix, thus, generalizing various results (see [6–8,5,9,10,1], and the references
therein). Our method is based on Hessenberg submatrices associated to Br,n.

Section 2dealswith the LU factorization of an r-bandedmatrix. To find the inverse of such amatrix (obtained in Section 4),
we need to find inverses of the obtained triangular matrices from the LU factorization and this is done in Section 3. We
conclude the paper with a few examples in Section 5.

2. LU factorization of an r-banded matrix

This section ismainly devoted to the LU factorization of thematrix Br,n. First, we construct two recurrences. For 1 ≤ i ≤ r
and s ≥ r ≥ 1, define

kis = ais −

r−i
t=1

mt
s−tk

t+i
s−t (2)
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and for 1 ≤ i ≤ r − 1

mi
s =

a−(i+1)
s −

r−i−1
t=1

mi+t
s−tk

t+1
s−t

k1s
, (3)

with initial conditions

mi
1 =

a−(i+1)
1

k11
=

a−(i+1)
1

a11
, 1 ≤ i ≤ r − 1

and

ki1 = ai1, 1 ≤ i ≤ r,

where the terms a±i
n for 1 ≤ i ≤ n are the entries of Br,n. For these sequences to be well-defined, we assume that none of

the denominators kis are zero (which is equivalent to the below-defined U , and consequently, Br,n being invertible).
Now define unitary lower tridiagonal matrix L and upper triangular matrix U ,

L =

lij


=



1 0
m1

1 1
m2

1 m1
2 1

... m2
2 m1

3 1

mr−1
1

... m2
3 m1

4
. . .

0 mr−1
2

. . . m2
4

. . . 1
...

. . .
. . . . . .

. . . m1
n−2 1

0 . . . 0 mr−1
n−r+1 . . . m2

n−2 m1
n−1 1


(4)

and

U =

uij


=



k11 k21 k31 . . . kr1 0 . . . 0

k12 k22 k32 . . . kr2
...

k13 k23 k33 . . .
. . . 0

k14 k24
. . . . . . krn−r+1

k15
. . . k3n−3

...

. . . k2n−2 k3n−2
k1n−1 k2n−1

0 k1n


. (5)

Our first result gives the LU factorization of Br,n.

Theorem 1. For n > 1, the LU factorization of matrix Br,n is given by

Br,n = LU

where L and U are defined as in (4) and (5), respectively.

Proof. First, we consider the case 1 ≤ i = j ≤ r . From matrix multiplication and the definitions of L and U , we have

bii =

n
s=1

li,sus,i =

i
s=1

li,sus,i

= li,1u1,i + li,2u2,i + · · · + liiuii

= mi−1
1 ki1 + mi−2

2 ki−1
2 + · · · + m1

i−1k
2
i−1 + k1i .

From (2), by taking r = i, we obtain

bii = a1i ,
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which gives the conclusion. Now consider the case of i > r . Thus

bii =

n
s=1

lisusi =

r
s=1

li,i−s+1ui−s+1,i

= liiuii + li,i−1ui−1,i + · · · + li,i−r+1ui−r+1,i.

From the definitions of L and U , we write

bii = k1i + m1
i−1k

2
i−1 + m2

i−2k
3
i−2 + · · · + mr−1

i−r+1k
r
i−r+1

which, by taking i = 1 in (2) implies

bii = a1n,

which shows the claim for i = j.
Next, we look at the super-diagonal entries of matrix Br,n. Consider the case j = i + qwhere 1 ≤ q ≤ r − 1. Thus, by the

definition of Bn, for 1 ≤ q ≤ r − 1,

bi,i+q = a1+q
i =

n
s=1

li,sus,i+q.

We consider two cases. First, we assume 1 ≤ i ≤ r − q, and so,

i
t=1

li,tut,i+q = li,1u1,i+q + li,2u2,i+q + · · · + liiui,i+q

= mi−1
1 ki+q

1 + mi+q
2 ki+q−1

2 + · · · + m1
i−1k

q+1
i−1 + kq+1

i

which, by taking i → q + 1 and n → i in (2), gives us

i
t=1

li,tut,i+q = a1+q
i ,

which completes the proof for the first case.
Now we consider the case r − q < i. Thus we write

bi,i+q = a1+q
i =

n
s=1

li,sus,i+q =

r−q
t=1

li,i−t+1ui−t+1,i+q.

From the definitions of matrices U and L, we can write
r−q
t=1

li,i−t+1ui−t+1,i+q = liiui,i+q + li,i−1ui−1,i+q + · · · + li,i−r−q+1ui−r+q+1,i+q

= k1+q
i + mi

i−1k
2+q
i−1 + m2

i−2k
3+q
i−2 + · · · + mr−q−1

i−r+q+1k
r
i−r+q+1

= k1+q
i +

r−q−1
t=1

mt
i−tk

q+1+t
i−t .

Using (2), we obtain

bi,i+q = a1+q
i ,

which completes the proof for the upper diagonal entries of matrix Br,n.

Finally, we look at the upper diagonal entries of the matrix Br,n, and we need to show that bi+q,i = a−(q+1)
i . Here, we first

consider the case 1 ≤ i ≤ r − q. From the definitions of matrices U and L,

bi+q,i =

n
t=1

li+q,tut,i =

i
t=1

li+q,tut,i

= mi+q−1
1 ki1 + mi+q−2

2 k−1
2 + · · · + mq+1

i−1 k
2
i−1 + mq

i k
1
i

= mq
i k

1
i +

i−1
t=1

mq+t
i−t k

t+1
i−t
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which, by taking n → i and i → q in (2), implies

bi+q,i = a−(q+1)
i .

For the final case, that is, i > r − q, using the definitions of U1 and L1, we write

bi+q,i =

n
t=1

li+q,tut,i =

r−q
t=1

li+q,i−t+1ui−t+1,i

= li+q,iui,i + li+q,i−1ui−1,i + · · · + li+q,i−r+q+1ui−r+q+1,i

= mq
i k

1
i + mq+1

i−1 k
2
i−1 + · · · + mq+(r−q−1)

i−r+q+1 kr−q
i−r+q+1

= mq
i k

1
i +

r−q−1
t=1

mq+t
i−t k

t+1
i−t

which, by taking n → i and i → q in (2), gives

bi+q,i = a−(q+1)
i ,

and the theorem is proved. �

The result of Theorem 1will be valid for the LU factorization of any arbitrary square matrix by taking r = n in the matrix
Br,n.

Now we give a closed formula for det

Br,n


using the LU factorization of Br,n.

Corollary 2. For n > 0,

det Br,n =

n
i=1

k1i

where k1i ’s are given by (2).

3. The inverse of triangular matrices

In this section we give an explicit formula for the inverse of a general triangular matrix. For this purpose, we construct
certain submatrices of a triangular matrix, which are Hessenberg matrices, and then we consider the determinants of
these submatrices to determine the entries of the inverse of the considered triangular matrix. Since upper and lower
triangular matrices have, essentially, the same properties, first we consider the upper triangular matrix case. We denote
the corresponding Hessenberg matrices for an upper and a lower triangular matrix by Hu (r, s) and Hℓ (r, s), respectively.

Let H =

hij

be an arbitrary (n × n) upper triangular matrix. Now we construct square Hessenberg submatrices of H

of order |s − r| in the following way: for s > r > 0, let Hu (r, s) =


h̃ij


denote an upper Hessenberg submatrix of H by

deleting its first r and last (n − s) columns, and, first (r − 1) and last (n − s + 1) rows. Clearly the (s − r) × (s − r) upper
Hessenberg matrix Hu (r, s) takes the form:

Hu (r, s) =


hr,r+1 hr,r+2 . . . hr,s−1 hr,s

hr+1,r+1 hr+1,r+2 . . . hr+1,s−1 hr+1,s

0
. . .

...
...

... . . . hs−2,s−2 hs−2,s−1 hs−2,s
0 . . . 0 hs−1,s−1 hs−1,s

 . (6)

Similarly let H =

hij

be an arbitrary (n × n) lower triangular matrix. We construct square Hessenberg submatrices of

H of order (r − s) in the following way: for r > s > 0, let Hℓ (r, s) =


ĥij


denote a lower Hessenberg submatrix of H by

deleting its first r and last (n − s) rows, and, first (r − 1) and last (n − s + 1) columns. Clearly the (r − s) × (r − s) lower
Hessenberg matrix Hℓ (r, s) takes the form:

Hℓ (r, s) =


hr+1,r hr+1,r+1 0 0

hr+2,r hr+2,r+1
. . .

...
...

. . . hs−2,s−2
hs−1,r hs−1,r+1 . . . hs−1,s−2 hs−1,s−1
hs,r hs,r+1 . . . hs,s−2 hs,s−1

 .
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Here we note that (Hu (r, s))T = (Hℓ (s, r)). Our construction is valid for any upper or lower triangular matrix, but we will
apply it only to L,U , given by (4) and (5), rendering Lℓ(i, j),Uu(i, j).

For example, let A be an upper triangular matrix of order 6 as follows:

A =


a1 b1 c1 d1 e1 f1
0 a2 b2 c2 d2 e2
0 0 a3 b3 c3 d3
0 0 0 a4 b4 c4
0 0 0 0 a5 b5
0 0 0 0 0 a6

 .

Thus Au (2, 5) and Au (3, 6) take the forms :

Au (2, 5) =

b2 c2 d2
a3 b3 c3
0 a4 b4


and Au (3, 6) =

b3 c3 d3
a4 b4 c4
0 a5 b5


.

Here note that all matrices of the form Hu (i, j) (Hℓ (i, j)) obtained from an upper (lower) triangular matrix U are upper
(lower) Hessenberg matrices.

Now we start with the following two lemmas. Throughout this paper, we assume the boundary conditions Hu (r, r) =

Hℓ (r, r) = 1 and
j

i xi = 1 for i > j.

Lemma 3. Let the (j − i) × (j − i) upper Hessenberg matrix Hu (i, j) be defined as in (6). Then, for j > i + 1,

detHu (i, j) =

j−i
t=1


(−1)2j−t aj−t,j det (Hu (i, j − t))

j−1
k=j−1−t

akk


.

Proof. If we compute the determinant of the upper Hessenberg matrix Hu (i, j) by the Laplace expansion of a determinant
with respect to the last column, then the proof follows. �

Theorem 4. Let U =

aij

be an (n × n) arbitrary upper triangular matrix and W =


wij


= U−1, its inverse. Then

wij =


(aii)−1 if i = j,

j
k=i

akk

−1

(−1)i+j det (Hu (i, j)) j > i,

where Hu (r, s) is as before.

Proof. Denote WU by E =

eij

. It is clear that for the case i = j, E = In where In is the nth unit matrix. Now consider the

case j > i. From the definitions of matricesW and U,

eij =

n
t=1

witatj =

j
t=i

witatj

=
aij
aii

+

j
t=i+1


t

k=i

akk

−1

(−1)i+t atj det (Hu (i, t))

=
aij
aii

+
(−1)2i+1 ai+1,j det (Hu (i, i + 1))

aiiai+1,i+1
+

(−1)2i+2 ai+2,j det (Hu (i, i + 2))
aiiai+1,i+1ai+2,i+2

+ · · · +
(−1)i+j−2 aj−2,j det (Hu (i, j − 2))

j−2
k=i

akk

+
(−1)i+j−1 aj−1,j det (Hu (i, j − 1))

j−1
k=i

akk

+
(−1)i+j det (Hu (i, j))

j−1
k=i

akk

=


j−1
k=i

akk

−1 
aij (−1)2i

j−1
k=i+1

akk + ai+1,j (−1)2i+1
j−1

k=i+2

akk det (Hu (i, i + 1))

+ · · · + aj−2,j (−1)i+j−2
j−1

k=j−1

det (Hu (i, j − 2)) + (−1)i+j−1 aj−1,j det (Hu (i, j − 1))

+ (−1)i+j det (Hu (i, j))


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=


j−1
k=i

akk

−1  j−i
t=1


j−1

k=i+t

akk


(−1)2i+t−1 ai+t−1,j det (Hu (i, i + t − 1))


+ (−1)i+j det (Hu (i, j))


,

which, by Lemma 3, implies eij = 0, and the proof is completed. �

All the results of this sectionhold for lower triangularmatrices,with the obviousmodificationusing the lowerHessenberg
matrix.

Nowwemention an interesting fact that the numbers of summed or subtracted terms in computing the inverse of a term
of an upper (lower) triangular matrix are the generalized order-k Fibonacci numbers defined by

f kn =

k
i=1

cif kn−i, n > 0,

where f1−k = 1, f k
−k = · · · = f k0 = 0.

When k = 2 and c1 = c2 = 1, the generalized order-2 Fibonacci numbers are the usual Fibonacci numbers, that is,
f 2m = Fm (mth Fibonacci number). When also k = 3, c1 = c2 = c3 = 1, then the generalized order-3 Fibonacci numbers by
the initial conditions f 3

−2 = 1, f 30 = f 3
−1 = 0, are

1, 1, 2, 4, 7, 13, 24, . . . ,

which are also known as tribonacci numbers.
Let Un =


uij

be an upper (with k super-diagonals) triangular matrix of order n with uii = hi for 1 ≤ i ≤ n, ui,i+r =cr

t=1 ar,i for 1 ≤ i ≤ n − r, 1 ≤ r ≤ k and hi’s are all distinct from zero, and, ar,i’ s are arbitrary.
For computing the inverse of Un, we need the corresponding Hessenberg submatrices defined as before by H (r, s).

Thereforewe should note that the numbers of summed or subtracted terms in computing the inverse of a termofUn omitting
the signs and denominators of the terms, that is, the number of required summations in the expansion of det (H (r, s)),
are the generalized order-(s − r) Fibonacci numbers, f s−r

n . To show that, we consider a (k × k) upper Hessenberg matrix
Hk =


aij

with r-superdiagonalswhose entries are given by ai+1,i = ei for 1 ≤ i ≤ k−1, ai,i+r =

cr
t=1 h

(r)
t,i for 1 ≤ i ≤ k−r

and 0 ≤ r ≤ k, ei ≠ 0 for all i. If one superdiagonal has a 0 entry, then all the entries in this superdiagonal are zeros. That is,
if ai,i+r = 0 for some i and r , then cr = 0.

Here En denotes the number of summed or subtracted terms in detHn. For example, if

H3 =

a b c
d e f
0 g h


,

then detH3 = ahe − afg − bdh + cdg and so, the corresponding E3 = 4.
By expanding detHn with respect to the first row without any simplification in the entries h(r)

i =
cr

t=1 ar,i, we get

En = c1En−1 + c2En−2 + · · · + crEn−r .

One easily computes that E1 = 1, E2 = 2, E3 = 4, . . . , Er = 2r−1.
Consequently one can see that En = f kn+1 where f kn is the generalized order-k Fibonacci numbers.
For example, for k = 4, r = 2, let c1 = 2 and c2 = 1, that is, ai,i+1 =

2
t=1 h

(1)
t,i = h(1)

1,i + h(1)
2,i , ai,i+2 =

1
t=1 h

(2)
t,i = h(2)

1,i
and so

H4 =


h(1)
1,1 + h(1)

2,1 h(2)
1,1 0 0

e1 h(1)
1,2 + h(1)

2,2 h(2)
1,2 0

0 e2 h(1)
1,3 + h(1)

2,3 h(2)
1,3

0 0 e3 h(1)
1,4 + h(1)

2,4

 .

Since r = 2, c1 = 2, c2 = 1, the counting sequence En satisfies

En = 2En−1 + En−2,

with E1 = 1, E2 = 2, so En = Pn, the well known Pell sequence.
Therefore, the number of summed or subtracted terms while computing detH4 is the 5th Pell number:

det


h(1)
1,1 + h(1)

2,1 h(2)
1,1 0 0

e1 h(1)
1,2 + h(1)

2,2 h(2)
1,2 0

0 e2 h(1)
1,3 + h(1)

2,3 h(2)
1,3

0 0 e3 h(1)
1,4 + h(1)

2,4


= e1e3h2

1,1h
2
1,3 + h1,1h1,2h1,3h1,4 + h1,1h1,2h1,3h2,4 + h1,1h1,2h1,4h2,3 + h1,1h1,3h2,2h1,4



E. Kılıç, P. Stanica / Journal of Computational and Applied Mathematics 237 (2013) 126–135 133

+ h1,2h2,1h1,3h1,4 + h1,1h1,2h2,3h2,4 + h1,1h1,3h2,2h2,4 + h1,1h2,2h1,4h2,3 + h1,2h2,1h1,3h2,4

+ h1,2h2,1h1,4h2,3 + h2,1h1,3h2,2h1,4 + h1,1h2,2h2,3h2,4 + h1,2h2,1h2,3h2,4 + h2,1h1,3h2,2h2,4

+ h2,1h2,2h1,4h2,3 + h2,1h2,2h2,3h2,4 − e1h2
1,1h1,3h1,4 − e2h1,1h2

1,2h1,4 − e3h1,1h1,2h2
1,3

− e1h2
1,1h1,3h2,4 − e1h2

1,1h1,4h2,3 − e2h2
1,2h2,1h1,4 − e2h1,1h2

1,2h2,4 − e3h1,1h2
1,3h2,2

− e3h1,2h2,1h2
1,3 − e1h2

1,1h2,3h2,4 − e2h2
1,2h2,1h2,4 − e3h2,1h2

1,3h2,2.

From the above example, it is seen that there are 29 terms in the expansion of detH4 which is the 5th Pell number, P5.

4. The inverse of an r-banded matrix

In this section, we give a closed formula for the inverse of an r-bandedmatrix. First, we consider the inverse of the upper
triangular matrix L1. Here we recall a well known fact that the inverse of an upper triangular matrix is also upper triangular.
We shall give the following lemmas whose proofs are straightforward.

Lemma 5. Let the lower triangular matrix L be as in (4). Let E =

eij

denote the inverse of L. Then

eij =


1, if i = j,
(−1)i+j det (Lℓ (i, j)) , if j < i,

where Lℓ (i, j) is defined as before.

Lemma 6. Let the upper triangular matrix U be as in (5). Let G =

gij

denote the inverse of U. Then

gij =



1
k1i

, if j = i,

(−1)i+j det (Uu (i, j))
j

r=i
k1r

, if j > i,

where Uu (i, j) is defined as before.

The main result of this section follows from the LU factorization of Br,n and the previous lemmas.

Theorem 7. Let Dn =

dij

denote the inverse of the matrix Br,n. Then dij =

n
t=1 gitetj, where git , etj are defined in the previous

lemmas. Precisely, if we let S(i, t, j) =
det(Uu(i,j)) det(Lℓ(t,j))j

r=i k
1
r

, then

dij =



(−1)i+j det(Uu(i, j))
j

r=i
k1r

+ (−1)i+j
n

t>j

S(i, t, j), if i < j

1
k1i

+

n
t>i

S(i, t, i), if i = j

1
k1i

(−1)i+j det(Lℓ(i, j)) + (−1)i+j
n

t>i

S(i, t, j), if i > j.

Proof. Since Br,n = LU , then by the previous two lemmas, we get D = U−1L−1, and so,

dij =

n
t=1

gitetj =

n
t=max{i,j}

gitetj.

By taking the three cases i < j, i = j, i > j and using the expressions of git , etj from Lemmas 5 and 6, the claim follows. �

5. Some particular cases

If we take r = 2, and S2,n to be a symmetric matrix, and label a1i = ai, b2i = b−2
i = −bi+1, we obtain the formulas of [11]

for the inverse of
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S2,n =



a1 −b2 · · · · · · · · · · · · 0
−b2 a2 −b3 · · · · · · · · · 0
0 −b3 a3 −b4 · · · · · · 0
...

...
...

...
...

...
...

0 · · · · · · · · · −bn−1 an−1 −bn
0 · · · · · · · · · 0 −bn an


,

namely, the existence of two sequences ui, vi such that

S−1
2,n =


u1v1 u1v2 u1v3 · · · u1vn
u1v2 u2v2 u2v3 · · · u2vn
u1v3 u2v3 u3v3 · · · u3vn

...
...

...
...

...
u1vn u2vn u3vn · · · unvn

 .

The sequences ui, vj can be determined (as Meurant did in [11]) using the LU decomposition of Theorem 1, and they will
depend on our kji,m

j
i. We will not repeat the argument here.

Consider the general binary recurrence Gn+1 = a Gn + b Gn−1,G0 = 0,G1 = 1. Let

G3,n =



1 0 · · · · · · · · · · · · 0
−a 1 0 · · · · · · · · · 0
−b −a 1 0 · · · · · · 0
...

...
...

...
...

...
...

0 · · · · · · · · · −a 1 0
0 · · · · · · · · · −b −a 1


.

Its inverse is [12]

G−1
3,n =



G1 0 · · · · · · · · · · · · 0
G2 G1 0 · · · · · · · · · 0
G3 G2 G1 0 · · · · · · 0
...

...
...

...
...

...
...

Gn−1 Gn−2 · · · · · · G2 G1 0
Gn Gn−1 · · · · · · G3 G2 G1


.

In the same manner, by going through our argument, one can obtain many other known (and possibly unknown) matrix
inverses and determinants. We end by displaying, yet another example, based on the Chebyshev polynomials of the
second kind, Un(x) =

sin(n+1)θ
sin θ

, cos θ = x, which satisfy the recurrence: Un+1(x) = 2xUn(x) − Un−1(x),U0(x) =

1,U1(x) = 2x. The symmetric Toeplitz S =

 a b 0 · · · 0
b a b · · · 0

· · · · · · · · · · · · · · ·

0 · · · b a b
0 · · · · · · b a

has the inverse [13] S−1
= (tij)ij where tij =

(−1)i+j 1
b

Ui−1(a/2b)Un−j(a/2b)
Un(a/2b)

, i ≤ j

(−1)i+j 1
b

Uj−1(a/2b)Un−i(a/2b)
Un(a/2b)

, i > j.

It could be interesting to use a variation of the methods of this paper to investigate the spectrum of general r-banded
matrices (see [14], for example).
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